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The EM Algorithm

The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is
missing. More generally, however, the EM algorithm can also be applied when there is latent, i.e. unobserved,
data which was never intended to be observed in the first place. In that case, we simply assume that the latent
data is missing and proceed to apply the EM algorithm. The EM algorithm has many applications throughout
statistics. It is often used for example, in machine learning and data mining applications, and in Bayesian
statistics where it is often used to obtain the mode of the posterior marginal distributions of parameters.

1 The Classical EM Algorithm

We begin by assuming that the complete data-set consists of Z = (X ,Y) but that only X is observed. The
complete-data log likelihood is then denoted by l(θ;X ,Y) where θ is the unknown parameter vector for which
we wish to find the MLE.

E-Step: The E-step of the EM algorithm computes the expected value of l(θ;X ,Y) given the observed data,
X , and the current parameter estimate, θold say. In particular, we define

Q(θ; θold) := E [l(θ;X ,Y) | X , θold]

=

∫
l(θ;X , y) p(y | X , θold) dy (1)

where p(· | X , θold) is the conditional density of Y given the observed data, X , and assuming θ = θold.

M-Step: The M-step consists of maximizing over θ the expectation computed in (1). That is, we set

θnew := max
θ

Q(θ; θold).

We then set θold = θnew.

The two steps are repeated as necessary until the sequence of θnew’s converges. Indeed under very general
circumstances convergence to a local maximum can be guaranteed and we explain why this is the case below. If
it is suspected that the log-likelihood function has multiple local maximums then the EM algorithm should be
run many times, using a different starting value of θold on each occasion. The ML estimate of θ is then taken to
be the best of the set of local maximums obtained from the various runs of the EM algorithm.

Why Does the EM Algorithm Work?

We use p(· | ·) to denote a generic conditional PDF. Now observe that

l(θ;X ) = ln p(X | θ) = ln

∫
p(X , y | θ) dy

= ln

∫
p(X , y | θ)
p(y | X , θold)

p(y | X , θold) dy
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= lnE

[
p(X ,Y | θ)
p(Y | X , θold)

| X , θold
]

≥ E

[
ln

(
p(X ,Y | θ)
p(Y | X , θold)

)
| X , θold

]
(2)

= E [ln p(X ,Y | θ) | X , θold] − E [ln p(Y | X , θold) | X , θold]
= Q(θ; θold) − E [ln p(Y | X , θold) | X , θold] (3)

where (2) follows from Jensen’s Inequality and since the ln function is concave. It is also clear (because the
term inside the expectation becomes a constant) that the inequality in (2) becomes an equality if we take
θ = θold. Letting g(θ | θold) denote the right-hand-side of (3), we therefore have

l(θ;X ) ≥ g(θ | θold)

for all θ with equality when θ = θold. Therefore any value of θ that increases g(θ | θold) beyond g(θold | θold)
must also increase l(θ;X ) beyond l(θold;X ). The M-step finds such a θ by maximizing Q(θ; θold) over θ which
is equivalent (why?) to maximizing g(θ | θold) over θ. It is also worth mentioning that in many applications the
function Q(θ; θold) will be a convex function of θ and therefore easy to optimize.

2 Examples

Example 1 (Missing Data in a Multinomial Model)
Suppose x := (x1, x2, x3, x4) is a sample from a Mult(n, πθ) distribution where

πθ =

(
1

2
+

1

4
θ,

1

4
(1− θ), 1

4
(1− θ), 1

4
θ

)
.

The likelihood, L(θ;x), is then given by

L(θ;x) =
n!

x1!x2!x3!x4!

(
1

2
+

1

4
θ

)x1
(
1

4
(1− θ)

)x2
(
1

4
(1− θ)

)x3
(
1

4
θ

)x4

so that the log-likelihood l(θ;x) is

l(θ;x) = C + x1 ln

(
1

2
+

1

4
θ

)
+ (x2 + x3) ln (1− θ) + x4 ln (θ)

where C is a constant that does not depend on θ. We could try to maximize l(θ;x) over θ directly using
standard non-linear optimization algorithms. However, in this example we will perform the optimization instead
using the EM algorithm. To do this we assume that the complete data is given by y := (y1, y2, y3, y4, y5) and
that y has a Mult(n, π∗θ) distribution where

π∗θ =

(
1

2
,
1

4
θ,

1

4
(1− θ), 1

4
(1− θ), 1

4
θ

)
.

However, instead of observing y we only observe (y1 + y2, y3, y4, y5), i.e, we only observe x. We therefore take
X = (y1 + y2, y3, y4, y5) and take Y = y2. The log-likelihood of the complete data is then given by

l(θ;X ,Y) = C + y2 ln (θ) + (y3 + y4) ln (1− θ) + y5 ln (θ)

where again C is a constant containing all terms that do no depend on θ. It is also clear that the conditional
density of Y satisfies

f(Y | X , θ) = Bin

(
y1 + y2,

θ/4

1/2 + θ/4

)
.
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We can now implement the E-step and M-step.

E-Step: Recalling that Q(θ; θold) := E [l(θ;X ,Y) | X , θold], we have

Q(θ; θold) := C + E [y2 ln (θ) | X , θold] + (y3 + y4) ln (1− θ) + y5 ln (θ)

= C + (y1 + y2)pold ln (θ) + (y3 + y4) ln (1− θ) + y5 ln (θ)

where

pold :=
θold/4

1/2 + θold/4
. (4)

M-Step: We now maximize Q(θ; θold) to find θnew. Taking the derivative we obtain

dQ

dθ
=

(y1 + y2)

θ
pold −

(y3 + y4)

1− θ
+

y5
θ

which is zero when we take θ = θnew where

θnew :=
y5 + pold(y1 + y2)

y3 + y4 + y5 + pold(y1 + y2)
(5)

Equations (4) and (5) now define the EM iteration which begins with some (judiciously) chosen value of θold.

Example 2 (A Simple Normal-Mixture Model)
An extremely common application of the EM algorithm is to estimate the MLE of normal mixture models. This
is often used, for example, in clustering algorithms. Suppose for example that X = (X1, . . . , Xn) are IID
random variables each with PDF

fx(x) =

m∑
j=1

pj
e−(x−µj)

2/2σ2
j√

2πσ2
j

where pj ≥ 0 for all j and where
∑
pj = 1. The parameters in this model are the pj ’s, the µj ’s and the σj ’s.

Instead of trying to finding the maximum likelihood estimates of these parameters directly via numerical
optimization, we can use the EM algorithm. We do this by assuming the presence of an additional random
variable, Y say, where P (Y = j) = pj for j = 1, . . . ,m. The realized value of Y then determines which of the
m normal distributions generates the corresponding value of X. There are n such random variables,
(Y1, . . . , Yn) := Y. Note that

fx|y(xi | yi = j, θ) =
1√
2πσ2

j

e−(xi−µj)
2/2σ2

j (6)

where θ := (p1, . . . , pm, µ1, . . . , µm, σ1, . . . , σm) is the unknown parameter vector and that the likelihood is
given by

L(θ;X ,Y) =
n∏
i=1

pyi
1√
2πσ2

yi

e−(xi−µyi
)2/2σ2

yi .

The EM algorithm starts with an initial guess, θold, and then iterates the E-step and M-step as described below
until convergence.

E-Step: We need to compute Q(θ; θold) := E [l(θ;X ,Y) | X , θold]. Indeed it is straightforward to show that

Q(θ; θold) =

n∑
i=1

m∑
j=1

P (Yi = j | xi, θold) ln
(
fx|y(xi | yi = j, θ)P (Yi = j | θ)

)
. (7)
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Note that fx|y(xi | yi = j, θ) is given by (6) and that P (Yi = j | θold) = pj,old. Finally, since

P (Yi = j | xi, θold) =
P (Yi = j, Xi = xi | θold)

P (Xi = xi | θold)
=

fx|y(xi | yi = j, θold) P (Yi = j | θold)∑m
k=1 fx|y(xi | yi = k, θold) P (Yi = k | θold)

it is clear that we can compute (7) analytically.

M-Step: We can now maximize Q(θ; θold) by setting the vector of partial derivatives, ∂Q/∂θ, equal to 0 and
solving for θnew. After some algebra, we obtain

µj,new =

∑n
i=1 xiP (Yi = j | xi, θold)∑n
i=1 P (Yi = j | xi, θold)

(8)

σ2
j,new =

∑n
i=1(xi − µj)2P (Yi = j | xi, θold)∑n

i=1 P (Yi = j | xi, θold)
(9)

pj,new =
1

n

n∑
i=1

P (Yi = j | xi, θold). (10)

Given an initial estimate, θold, the EM algorithm cycles through (8) to (10) repeatedly, setting θold = θnew after
each cycle, until the estimates converge.

3 A More General Version of the EM Algorithm

The EM algorithm is often stated more generally using the language of information theory. In this section1 we
will describe this more general formulation and relate it back to EM algorithm as described in Section 1. As
before the goal is to maximize the likelihood function, L(θ;X ), which is given by2

L(θ;X ) = p(X | θ) =
∫
y

p(X , y | θ) dy. (11)

The implicit assumption underlying the EM algorithm is that it is difficult to optimize p(X | θ) with respect to θ
but that it is much easier to optimize p(X ,Y | θ). We first introduce an arbitrary distribution, q(Y), over the
latent variables, Y, and note that we can decompose the log-likelihood, l(θ;X ), into two terms (the first of
which is sometimes called the “energy” term) according to

l(θ;X ) := ln p(X | θ) = L(q, θ)︸ ︷︷ ︸
“energy”

+ KL(q || pY|X ) (12)

where L(q, θ) and KL(q || pY|X ) are the likelihood and Kullback-Leibler (KL) divergence3 which are given by

L(q, θ) =

∫
Y
q(Y) ln

(
p(X ,Y | θ)
q(Y)

)
(13)

KL(q || pY|X ) = −
∫
Y
q(Y) ln

(
p(Y |X , θ)
q(Y)

)
.

It is well-known (see the Appendix) that the KL divergence satisfies KL(q || pY|X ) ≥ 0 and equals 0 if and only if
q(Y) = pY|X . It therefore follows that L(q, θ) ≤ l(θ;X ) for all distributions, q(·). We can now use the
decomposition of (12) to define the EM algorithm. We begin with an initial parameter estimate, θold.

E-Step: The E-step maximizes the lower bound, L(q, θold), with respect to q(·) while keeping θold fixed. In
principle this is a variational problem since we are optimizing a functional, but the solution is easily found.

First note that l(θold;X ) does not depend on q(·). It then follows from (12) (with θ = θold) that maximizing
L(q, θold) is equivalent to minimizing KL(q || pY|X ). Since this latter term is always non-negative we see that

1The material in this section is drawn from Pattern Recognition and Machine Learning (2006) by Chris Bishop.
2If Y is discrete then we replace the integral in (11) with a summation.
3The KL divergence is also often called the relative entropy.
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L(q, θold) is optimized when KL(q || pY|X ) = 0 which, by our earlier observation, is the case when we take
q(Y) = p(Y |X , θold). At this point we see that the lower bound, L(q, θold), will now equal the current value of
the log-likelihood, l(θold;X ).

M-Step: In the M-step we keep q(Y) fixed and maximize L(q, θ) over θ to obtain θnew. This will therefore
cause the lower bound to increase (if it is not already at a maximum) which in turn means that the log-likelihood
must also increase. Moreover, at this new value θnew it will no longer be the case that KL(q || pY|X ) = 0 and so
by (12) the increase in the log-likelihood will be greater than the increase in the lower bound.

Comparing the General EM Algorithm with the Classical EM Algorithm

It is instructive to compare the E-step and M-step of the general EM algorithm with the corresponding steps of
Section 1. To do this, first substitute q(Y) = p(Y |X , θold) into (13) to obtain

L(q, θ) = Q(θ; θold) + constant (14)

where Q(θ; θold) is the expected complete-date log-likelihood as defined in (1) where the expectation is taken
assuming θ = θold. The M-step of the general EM algorithm is therefore identical to the M-step of Section 1
since the constant term in (14) does not depend on θ.

The E-step in the general EM algorithm takes q(Y) = p(Y |X , θold) which, at first glance, appears to be
different to the E-step in Section 1. But there is no practical difference: the E-step in Section 1 simply uses
p(Y |X , θold) to compute Q(θ; θold) and, while not explicitly stated, the general E-step must also do this since it
is required for the M -step.

3.1 The Case of Independent and Identically Distributed Observations

When the data set consists of N IID observations, X = {xn} with corresponding latent or unobserved variables,
Y = {yn}, then we can simplify the calculation of p(Y |X , θold). In particular we obtain

p(Y |X , θold) =
p(X ,Y | θold)∑
Y p(X ,Y | θold)

=

∏N
n=1 p(xn, yn | θold)∑

Y
∏N
n=1 p(xn, yn | θold)

=

∏N
n=1 p(xn, yn | θold)∏N
n=1 p(xn | θold)

=

N∏
n=1

p(yn |xn, θold)

so that the posterior distribution also factorizes which makes its calculation much easier. Note that the E-step
of Example 2 is consistent with this observation.

3.2 Bayesian Applications

The EM algorithm can also be used to compute the mode of the posterior distribution, p(θ | X ), in a Bayesian
setting where we are given a prior, p(θ), on the unknown parameter (vector), θ. To see this, first note that we
can write p(θ | X ) = p(X | θ)p(θ)/p(X ) which upon taking logs yields

ln p(θ | X ) = ln p(X | θ) + ln p(θ)− ln p(X ). (15)

If we now use (12) to substitute for ln p(X | θ) on the right-hand-side of (15) we obtain

ln p(θ | X ) = L(q, θ) + KL(q || pY|X ) + ln p(θ)− ln p(X ). (16)

We can now find the posterior mode of ln p(θ | X ) using a version of the EM algorithm. The E-step is exactly
the same as before since the final two terms on the right-hand-side of (16) do not depend on q(·). The M -step,
where we keep q(·) fixed and optimize over θ, must be modified however to include the ln p(θ) term.

There are also related methods that can be used to estimate the variance-covariance matrix, Σ, of θ. In this
case it is quite common to approximate the posterior distribution of θ with a Gaussian distribution centered at
the mode and with variance-covariance matrix, Σ. This is called a Laplacian approximation and it is a simple
but commonly used framework for deterministic inference. It only works well, however, when the posterior is
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unimodal with contours that are approximately elliptical. It is also worth pointing out, however, that it is often
straightforward to compute the mode of the posterior and determine a suitable Σ for the Gaussian
approximation so that the Laplacian approximation need not rely on the EM algorithm.

We also note in passing that the decomposition in (12) also forms the basis of another commonly used method
of deterministic inference called variational Bayes. The goal with variational Bayes is to select q(·) from some
parametric family of distributions, Q, to approximate p(Y |X ). The dependence on θ is omitted since we are
now in a Bayesian setting and θ can be subsumed into the latent or hidden variables, Y. In choosing q(·) we
seek to maximize the lower bound, L(q), or equivalently by (12), to minimize KL(q || pY|X ). A common choice
of Q is the set of distributions under which the latent variables are independent.

Appendix: Kullback-Leibler Divergence

Let P and Q be two probability distributions such that if P (x) = 0 then Q(x) = 0. The Kullback-Leibler (KL)
divergence or relative entropy of Q from P is defined to be

KL(P ||Q) =

∫
x

P (x) ln

(
P (x)

Q(x)

)
(17)

with the understanding4 that 0 log 0 = 0. The KL divergence is a fundamental concept in information theory
and machine learning. One can imagine P representing some true but unknown distribution that we
approximate with Q and that KL(P ||Q) measures the “distance” between P and Q. This interpretation is valid
because we will see below that KL(P ||Q) ≥ 0 with equality if and only if P = Q. Note however, that the KL
divergence is not a true measure of distance since it is asymmetric in that KL(P ||Q) 6= KL(Q ||P ) and does not
satisfy the triangle inequality.

In order to see that KL(P ||Q) ≥ 0 we first recall that a function f(·) is convex on R if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ [0, 1].

We also recall Jensen’s inequality:

Jensen’s Inequality: Let f(·) be a convex function on R and suppose E[X] <∞ and E[f(X)] <∞. Then
f(E[X]) ≤ E[f(X)].

Noting that − ln(x) is a convex function we have

KL(P ||Q) = −
∫
x

P (x) ln

(
Q(x)

P (x)

)
≥ − ln

(∫
x

P (x)
Q(x)

P (x)

)
by Jensen’s inequality

= 0.

Moreover it is clear from (17) that KL(P ||Q) = 0 if P = Q. In fact because − ln(x) is strictly convex it is easy
to see that KL(P ||Q) = 0 only if P = Q.

Example 3 (An Optimization “Trick” that’s Worth Remembering)
Suppose c is a non-negative vector in Rn, i.e. c ∈ Rn+, and we wish to maximize

∑n
i=1 ci ln(qi) over probability

mass functions, q = {q1, . . . , qn}. Let p = {p1, . . . , pn} where pi := ci/
∑
j cj so that p is a (known) pmf. We

then have:

max
q

n∑
i=1

ci ln(qi) =
( n∑
i=1

ci

)
max
q

{ n∑
i=1

pi ln(qi)
}

4This is consistent with the fact that limx→0 x log x = 0.
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=
( n∑
i=1

ci

)
max
q

{ n∑
i=1

pi ln(pi)−
n∑
i=1

pi ln

(
pi
qi

)}
,

=
( n∑
i=1

ci

)( n∑
i=1

pi ln(pi)−min
q

KL(p ||q)

)

from which it follows (why?) that the optimal q∗ satisfies q∗ = p.


