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Abstract. In this article, I provide an illustrative, step-by-step implementation
of the expectation-maximization algorithm for the nonparametric estimation of
mixed logit models. In particular, the proposed routine allows users to fit straight-
forwardly latent-class logit models with an increasing number of mass points so as
to approximate the unobserved structure of the mixing distribution.
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1 Introduction

In this article, I develop a nonparametric method suggested by Train (2008) for the esti-
mation of mixing distributions in conditional logit models, and I show how to implement
it in practice. Specifically, the proposed code allows users to estimate a discrete mixing
distribution with points and shares as parameters. This constitutes a typical latent-class
logit model, where the underlying mixing distribution can be fit nonparametrically by
setting a sufficiently large number of mass points.

Clearly, latent-class models can be fit through standard optimization methods, such
as Newton–Raphson or Berndt–Hall–Hall–Hausman. However, this becomes difficult
when the number of classes increases, because the higher the number of parameters the
more difficult the inversion of the empirical Hessian matrix, with the possibility of sin-
gularity at some iterations. In such situations, the proposed expectation-maximization
(EM) recursion could help, because it implies the repeated evaluation of a function that
is easier to maximize. Moreover, EM algorithms have proved to be particularly stable,
and—under conditions given by Boyles (1983) and Wu (1983)—they always climb uphill
until convergence to a local maximum.

The article is structured as follows: section 2 presents the mixed logit model with
both continuous and discrete mixing distributions; section 3 shows how a mixed logit
model with discrete mixing distributions can be fit via EM algorithm; section 4 presents
an illustrative, step-by-step implementation of the EM recursion; section 5 contains an
empirical application based on accessible data; and section 6 concludes.
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2 The mixed logit model

Assume there are N agents who face J alternatives on T choice occasions. Agents
choose the alternative that maximizes their utility in each choice occasion. The random
utility of agent i from choosing alternative j in period t is defined as follows

Uijt=βixijt + εijt

where xijt is a vector of alternative-specific attributes and εijt is a stochastic term that is
assumed to be an independent and identically distributed extreme value. Importantly,
each βi is assumed to be random with the unconditional density f(β |ϑ), where ϑ
collects the parameters that characterize the distribution.

Conditional on knowing βi, the probability of the observed sequence of choices for
agent i is given by the traditional McFadden’s (1974) choice model

Pr
i

(β) =
T∏

t=1

J∏
j=1

{
exp(βixijt)∑J

k=1 exp(βixikt)

}dijt

where dijt is a dummy that selects the chosen alternative in each choice occasion. How-
ever, because βi is unknown, the conditional probability of the sequence of observed
choices has to be evaluated for any possible value of βi. Hence, assuming that f(β |ϑ)
has a continuous distribution, the unconditional probability becomes

Pr
i

(ϑ) =
∫ T∏

t=1

J∏
j=1

{
exp(βxijt)∑J

k=1 exp(βxikt)

}dijt

f(β|ϑ) (1)

This probability defines a mixed logit model with continuous mixing distributions, and
typically, the related log-likelihood function is fit with simulation methods.1 If the
distribution of each βi is discrete, the probability in (1) becomes

Pr
i

(ϑ) =
C∑

c=1

πc

T∏
t=1

J∏
j=1

{
exp(βcxijt)∑J

k=1 exp(βcxikt)

}dijt

(2)

where πc = f(βc|ϑ) represents the share of the population with coefficients βc.

Equation (2) is a typical latent-class logit model. Nevertheless, here we follow
McFadden and Train (2000) and define it as a mixed logit model with discrete mix-
ing distributions, to emphasize the similarities with the continuous-mixture logit model
of (1).

The estimation of latent-class models is usually based on standard gradient-based
methods. However, these methods often fail to achieve convergence when the number
of latent classes becomes high. In this case, an EM algorithm could help, because it
requires the repeated maximization of a function that is far simpler with respect to the
log likelihood derived from (2).

1. See Train (2003). In Stata, continuous mixed logit models can be fit with simulated maximum
likelihood through the command mixlogit, written by Hole (2007).
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3 An EM algorithm for the estimation of mixed logit
models with discrete mixing distributions

EM algorithms were initially proposed in the literature to deal with missing-data prob-
lems. Nevertheless, they turned out to be an efficient method to fit latent-class models,
where the missing information consists of the class share probabilities. Nowadays, they
are widely used in many economic fields where the assumption that people can be
grouped in classes with different unobserved preference heterogeneity is reasonable.

The recursion is known as “E-M” because it consists of two steps, namely, an “expec-
tation” and a “maximization”. As explained in Train (2008), the term to be maximized
is the expectation of the missing-data log likelihood—that is, the joint density of the
observed choice and the missing data—whilst the expectation is over the distribution
of the missing information, conditional on the density of the data and the previous
parameter estimates.

Consider the conditional logit model with discrete mixing distributions that we out-
lined in the previous section. Following (2), the log likelihood is defined as

LL =
N∑

i=1

ln
C∑

c=1

πc

T∏
t=1

J∏
j=1

{
exp(βcxijt)∑J

k=1 exp(βcxikt)

}dijt

which can be maximized by means of standard, gradient-based optimization methods.
However, the same log likelihood can be also maximized by repeatedly updating the
following recursion

ηs+1 = argmaxη

∑
i

∑
c Ci(ηs) ln πc

∏
t

∏
j

{
exp(βcxijt)∑J

k=1 exp(βcxikt)

}dijt

= argmaxη

∑
i

∑
c Ci(ηs) ln(Li | classi = c)

(3)

where η is a vector that contains the whole set of parameters to be estimated—that is,
those that enter the probability of the observed choice plus those that may define the
class shares—Li is the missing-data likelihood function, and Ci(ηs) is the conditional
probability that household i belongs to class c, which depends on the density of the
data and the previous value of the parameters.

This conditional probability—Ci(ηs)—is the key future of the EM recursion and can
be computed by means of the Bayes’ theorem:

Ci(ηs) =
Li|classi = c∑C

c=1 Li|classi = c
(4)

Now, given that

ln(Li | classi = c) = ln πc + ln
T∏

t=1

J∏
j=1

{
exp(βcxijt)∑J

k=1 exp(βcxikt)

}dijt

(5)
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the recursion in (3) can be split into the following steps:

1. Form the contribution to the likelihood (Li | classi = c) as defined in (3) for each
class;2

2. Form the individual-specific conditional probabilities of class membership as in
(4);

3. Following (5), update the sets of βc, c = 1, 2, . . . , C, by maximizing—for each
class—a conditional logit model with weighted observations, with weights given
by the conditional probabilities of class membership:

βs+1
c = argmaxβ

N∑
i=1

C(ηs) ln
T∏

t=1

J∏
j=1

{
exp(βcxijt)∑J

k=1 exp(βcxikt)

}dijt

4. Maximize the other part of the log likelihood in (3), and get the updated vector
of class shares:

πs+1 = argmaxπ

N∑
i=1

C∑
c=1

Ci(ηs) ln πc

• If the class share probabilities depend on a vector of demographics—zi—the
relative parameters are updated as

αs+1 = argmaxα

N∑
i=1

C∑
c=1

Ci(ηs) ln
exp(αczi)∑
c exp(αczi)

, αC = 0 (6)

This is a grouped-data log likelihood, where we have used a logit specification
to constrain the estimated class share probabilities into the right range.3 The
updated class share probabilities—πc, c = 1, 2, . . . , C—are then computed as

πs+1
c =

exp(α̂s+1
c zi)∑

c exp(α̂s+1
c zi)

, c = 1, 2, . . . , C

which in turn allows updating the conditional probabilities of class member-
ship by means of the new vectors βs+1

c and πs+1
c , c = 1, 2, . . . , C.

• If the class share probabilities do not depend on demographics, the empirical
maximization of the function in (6) can be avoided, because its analytical
solution would be given by

πs+1
c =

∑
i Ci(ηs)∑

i

∑
c Ci(ηs)

, c = 1, . . . , C (7)

2. For the first iteration, starting values have to be used for the densities that enter the model. Note
that these starting values must be different in every class; otherwise, the recursion estimates the
same set of parameters for all the classes.

3. Differently from the βcs, the vectors αc , c = 1, 2, . . . , C, are jointly estimated. This is necessary
to ensure that

P
c πc = 1.
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where the updated conditional probabilities—Ci(ηs+1)—are computed by
means of the updated values of βc, c = 1, 2, . . . , C, and the previous values
of the class shares.

5. Once the conditional probabilities of class membership have been updated—either
in models with or without covariates on zi—the recursion can start again from
step 3 until convergence.

4 A Stata routine for the EM estimation of mixed logit
models with discrete mixing distributions

In this section, I show how the EM algorithm outlined above can be coded into Stata.
I propose a detailed step-by-step procedure that can be easily implemented in a simple
do-file and that works with accessible data from Huber and Train (2001) on household’s
choice of electricity supplier. Note that this is the same dataset used by Hole (2007)
for an application of his Stata command mixlogit, which performs the estimation of
parametric mixed logit models via simulated maximum likelihood.

The data contain information on 100 residential electricity customers who were asked
up to 12 choice experiments.4 In each experiment, the customer was asked which of the
four suppliers he or she would prefer among four hypothetical electricity suppliers, and
the following characteristics of each offer were stated:

• The price of the contract (in cents per kWh) whenever the supplier offers a contract
with a fixed rate (price)

• The length of contract that the supplier offered, expressed in years (contract)

• Whether the supplier is a local company (local)

• Whether the supplier is a well-known company (wknown)

• Whether the supplier offers a time-of-day rate instead of a fixed rate (tod)

• Whether the supplier offers a seasonal rate instead of a fixed rate (seasonal)

Each customer is identified by the variable pid. For each customer, the variable
gid identifies a given choice occasion, while the dummy variable y identifies the stated
choice in each choice occasion.

Because no individual-level variables are included in this database, I also simulate a
customer-specific variable— x1—to show how to fit a model with demographics in the
probability of class membership. Hence the data setup required for fitting the model is
as follows:

4. Because some customers stopped before answering all 12 experiments, there is a total of 1,195
choice occasions in the sample.
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. use http://fmwww.bc.edu/repec/bocode/t/traindata.dta

. set seed 1234567890

. by pid, sort: egen _x1=sum(round(rnormal(0.5),1))

. list in 1/12, sepby(gid)

y price contract local wknown tod seasonal gid pid _x1

1. 0 7 5 0 1 0 0 1 1 16
2. 0 9 1 1 0 0 0 1 1 16
3. 0 0 0 0 0 0 1 1 1 16
4. 1 0 5 0 1 1 0 1 1 16

5. 0 7 0 0 1 0 0 2 1 16
6. 0 9 5 0 1 0 0 2 1 16
7. 1 0 1 1 0 1 0 2 1 16
8. 0 0 5 0 0 0 1 2 1 16

9. 0 9 5 0 0 0 0 3 1 16
10. 0 7 1 0 1 0 0 3 1 16
11. 0 0 0 0 1 1 0 3 1 16
12. 1 0 0 1 0 0 1 3 1 16

Section 4.1 presents the steps for fitting a model with covariates on the class share
probabilities. Alternatively, the optimization of the algorithm when only a constant
term is included among the class probabilities is presented in section 4.2.

4.1 A model with covariates on the class share probabilities

To present a flexible routine, we will work with global variables so that the code can
be easily adapted to other databases. The dependent variable is called $depvar; the
list of covariates that enter the probability of the observed choice is called $varlist;
the list of variables that enter the grouped-data log likelihood is called $varlist2; the
variable that identifies the panel dimension—that is, the choice makers—is called $id;
and the variable that defines the choice situations for each choice maker is called $group.
We also define the number of latent classes, $nclasses, and the number of maximum
iterations, $niter.

. **(1) Set the estimation framework**

. global depvar "y"

. global varlist "price contract local wknown tod seasonal"

. global varlist2 "_x1"

. global id "pid"

. global group "gid"

. global nclasses "2"

. global niter "50"



290 An EM algorithm for nonparametric mixed logit models

Starting values are computed by randomly splitting the sample into C different
subsamples—one for each class—and fitting a separate clogit for each of them.5 After
each clogit estimation, we use the command predict to obtain the probability of
every alternative in each class, and we store them in the variables l1, l2, . . . , lC. As
for the starting values for the probability of class membership, we simply define equal
shares, that is, 1/C:

. **(2) Split the sample**

. by $id, sort: generate double _p=runiform() if _n==_N

. by $id, sort: egen double _pr=sum(_p)

. local prop 1/$nclasses

. generate double _ss=1 if _pr<=`prop´

. forvalues s=2/$nclasses {
2. replace _ss=`s´ if _pr>(`s´-1)*`prop´ & _pr<=`s´*`prop´
3. }

. **(3) Get starting values for both the beta coefficients and the class shares**

. forvalues s=1/$nclasses {
2. generate double _prob`s´=1/$nclasses
3. clogit $depvar $varlist if _ss==`s´, group($group) technique(nr dfp)
4. predict double _l`s´
5. }

In what follows, the steps to calculate the conditional probabilities of (4) from these
starting values are presented.

First, for each latent class, we multiply the variables l1, l2, . . . , lC by the dummy
variable that identifies the observed choice in each choice situation, that is, $depvar.
Note that this allows storing the probabilities of the observed choice for each class.

Second, for each latent class, we multiply the probabilities of the observed choices
in each choice situation to obtain the probability of the agent’s sequence of choices:6

. **(4) Compute the probability of the agent´s sequence of choices**

. forvalues s=1/$nclasses {
2. generate double _kbb`s´=_l`s´*$depvar
3. recode _kbb`s´ 0=.
4. by $id, sort: egen double _kbbb`s´=prod(_kbb`s´)
5. by $id, sort: replace _kbbb`s´=. if _n!=_N
6. }

Third, we construct the denominator of (4), that is, the unconditional choice prob-
ability for each choice maker. This is done by computing a weighted average of the
probabilities of the agent’s sequence of choices in each class, with weights given by the
class shares, that is, the variables prob1, prob2, . . . , probC:

5. If the same starting values were used for all the classes, the EM algorithm would perform the same
computations for each class and return the same results at each iteration.

6. This last step is done through the user-written command gprod. Type findit gprod and install
the package dm71.
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. **(5) Compute the choice probability**

. generate double _den=_prob1*_kbbb1

. forvalues s=2/$nclasses {
2. replace _den=_den+_prob`s´*_kbbb`s´
3. }

Finally, we compute the ratios defined in (4) and rearrange them to create individual-
level variables. These are the conditional probabilities of class membership as defined
in the previous section:

. **(6) Compute the conditional probabilities of class membership**

. forvalues s=1/$nclasses {
2. generate double _h`s´=(_prob`s´*_kbbb`s´)/_den
3. by $id, sort: egen double _H`s´=sum(_h`s´)
4. }

Before starting the loop that iterates the EM recursion until convergence, we need
to specify a Stata ml command that performs the estimation of the grouped-data model
defined in (6):7

. **(7) Provide Stata with the ML command for the grouped-data model**

. by $group, sort: generate _alt=sum(1)

. summarize _alt

. by $id, sort: generate double _id1=1 if _n<=r(mean)

. generate _con=1

. program logit_lf

. args lnf a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

. tempvar denom

. generate double `denom´=1

. forvalues c=2/$nclasses {
2. replace `denom´=`denom´+exp(`a`c´´)
3. }

. replace `lnf´=_H1*ln(1/`denom´) if $depvar==1 & _id1==1

. forvalues c=2/$nclasses {
2. replace `lnf´=`lnf´+_H`c´*ln(exp(`a`c´´)/`denom´) if $depvar==1 & _id1==1
3. }

. replace `lnf´=0 if `lnf´==.

. end

Here it is worth noting that following (6), we set to 0 one vector of parameters for
identification purposes.

We now present the loop that repeats the steps above until convergence:

. local i=1

. while `i´<= $niter {

7. The ml command presented in the following lines allows for up to 20 latent classes. However, the
routine can be easily modified to account for a different number of classes.
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To start, fit again the C clogit models—one for each class—using the conditional
probabilities of class membership as weights. Then recompute the probability of the
chosen alternative in each choice occasion to update probabilities of the agent’s sequence
of choices:

. **(8) Update the probability of the agent´s sequence of choices**

. capture drop _l* _kbbb*

. forvalues s=1/$nclasses {
2. clogit $depvar $varlist [iw=_H`s´], group($group) technique(nr dfp)
3. predict double _l`s´
4. replace _kbb`s´=_l`s´*$depvar
5. recode _kbb`s´ 0=.
6. by $id, sort: egen double _kbbb`s´=prod(_kbb`s´)
7. by $id, sort: replace _kbbb`s´=. if _n!=_N
8. }

Now launch the ml model for the estimation of the grouped-data log likelihood, and
use the active estimates to update the class share probabilities:

. **(9) Update the class share probabilities:

. global variables="($varlist2)"

. forvalues s=3/$nclasses {
2. global variables="$variables ($varlist2)"
3. }

. ml model lf logit_lf $variables, max

. capture drop _denom _a*

. generate double _denom= 1

. forvalues c=2/$nclasses {
2. local k = `c´ - 1
3. predict double _a`c´, eq(eq`k´)
4. replace _denom=_denom+exp(_a`c´)
5. }

. replace _prob1=1/_denom

. forvalues c=2/$nclasses {
2. replace _prob`c´=exp(_a`c´)/(_denom)
3. }

Once the class share probabilities have been updated, the next step requires updating
both the choice probability (that is, the variable den) and the conditional probabilities
of class membership (that is, the variables H*):

. **(10) Update the choice probability**

. replace _den=_prob1*_kbbb1

. forvalues s=2/$nclasses {
2. replace _den=_den+_prob`s´*_kbbb`s´
3. }

. **(11) Update the conditional probabilities of class membership**

. drop _H*

. forvalues s=1/$nclasses {
2. replace _h`s´=(_prob`s´*_kbbb`s´)/_den
3. by $id, sort: egen double _H`s´=sum(_h`s´)
4. }
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Now that both the parameters and the conditional probabilities have been updated,
the routine computes the new log likelihood and restarts the loop until convergence.

As Train (2008) points out, convergence of EM algorithms for nonparametric estima-
tion is still controversial and constitutes an area of future research. Here we follow Train
(2008) and Weeks and Lange (1989) and define convergence when the percentage vari-
ation in the log-likelihood function from one iteration to the other is sufficiently small.
In what follows, for example, the routine automatically stops the internal loop before
the selected number of iterations, provided that the log likelihood has not changed more
than 0.0001% over the last five iterations:8

. **(12) Update the log likelihood**

. capture drop _sumll

. egen _sumll=sum(ln(_den))

. **(13) Check for convergence**

. sum _sumll

. global z=r(mean)

. local _sl`i´=$z

. if `i´>=6 {

. local a=`i´-5

. if (-(`_sl`i´´ - `_sl`a´´)/`_sl`a´´<= 0.0001) {

. continue, break

. }

. }

. **(14) If not converged, display the log likelihood and restart the loop**

. display as green "Iteration " `i´ ": log likelihood = " as yellow $z

. local i=`i´ +1

. }

When convergence is achieved, results can be displayed by typing

. forvalues s=1/$nclasses {
2. clogit $depvar $varlist [iw=_H`s´], group($group)
3. }

4.2 A model without covariates on the class shares probabilities

If the model does not include demographics on the class share probabilities, the max-
imization of the grouped-data log likelihood can be avoided, because its solution can
be provided analytically by following (7). This is important because the maximization
of the grouped-data model slows down the overall estimation process, which could be-
come time-consuming when the number of latent classes is high. In this case, the EM

algorithm outlined in the previous section can be optimized by simply substituting the
ninth step of the loop with the following lines:

8. Such a small value is advisable because—as discussed in Dempster, Laird, and Rubin (1977)—EM
algorithms may move very slowly toward the maximum.
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**(9-bis) Update class share probabilities by means of (13)**

. forvalues s=1/$nclasses {
2. capture drop _nums`s´
3. egen double _nums`s´=sum(_h`s´)
4. }

. capture drop _dens

. generate double _dens=_nums1

. forvalues s=2/$nclasses {
2. replace _dens=_dens+_nums`s´
3. }

. forvalues s=1/$nclasses {
2. replace _prob`s´=nums`s´/dens
3. }

Subsequently, the loop continues as before from step 10 till the end.

5 Application

For our application, we use the data illustrated in the previous section. To begin with,
a typical conditional logit model is fit with the clogit command:

. use http://fmwww.bc.edu/repec/bocode/t/traindata.dta, clear

. clogit y price contract local wknown tod seasonal, group(gid)

Iteration 0: log likelihood = -1379.3159

(output omitted )

Iteration 4: log likelihood = -1356.3867

Conditional (fixed-effects) logistic regression Number of obs = 4780
LR chi2(6) = 600.47
Prob > chi2 = 0.0000

Log likelihood = -1356.3867 Pseudo R2 = 0.1812

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

price -.6354853 .0439523 -14.46 0.000 -.7216302 -.5493403
contract -.13964 .0161887 -8.63 0.000 -.1713693 -.1079107

local 1.430578 .0963826 14.84 0.000 1.241672 1.619485
wknown 1.054535 .086482 12.19 0.000 .8850338 1.224037

tod -5.698954 .3494016 -16.31 0.000 -6.383769 -5.01414
seasonal -5.899944 .35485 -16.63 0.000 -6.595437 -5.204451

From the results above, we can see that—on average—customers prefer lower prices,
shorter contract lengths, fixed-rate plans, and a local and well-known company. Now
we use the command mixlogit from Hole (2007) to fit a parametric mixed logit model
with independent, normally distributed coefficients:9

9. The model is fit via simulated maximum likelihood with 300 Halton draws.
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. mixlogit y, id(pid) group(gid) rand(price contract local wknown tod seasonal)
> nrep(300)

Iteration 0: log likelihood = -1249.8219 (not concave)

(output omitted )

Iteration 7: log likelihood = -1101.6085

Mixed logit model Number of obs = 4780
LR chi2(6) = 509.56

Log likelihood = -1101.6085 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
price -1.004329 .0721185 -13.93 0.000 -1.145679 -.8629798

contract -.2274985 .047386 -4.80 0.000 -.3203735 -.1346236
local 2.208746 .2439681 9.05 0.000 1.730578 2.686915

wknown 1.656329 .1707167 9.70 0.000 1.32173 1.990927
tod -9.364151 .5858618 -15.98 0.000 -10.51242 -8.215883

seasonal -9.496181 .5792009 -16.40 0.000 -10.63139 -8.360968

SD
price .2151655 .0311095 6.92 0.000 .154192 .2761389

contract .384136 .044778 8.58 0.000 .2963728 .4718992
local 1.788806 .2370063 7.55 0.000 1.324282 2.25333

wknown 1.185838 .1731652 6.85 0.000 .8464401 1.525235
tod 1.6553 .2094545 7.90 0.000 1.244777 2.065824

seasonal -1.119371 .2836182 -3.95 0.000 -1.675252 -.5634893

As can be seen from the maximized log likelihood, we can reject the conditional logit
specification in favor of a random coefficient model. Moreover, the magnitude of the
coefficients is significantly different when compared with the estimates from clogit.10

We now fit a nonparametric mixed logit model by means of the EM algorithm outlined
in the previous section. Following Greene and Hensher (2003) and Train (2008), the
choice of the appropriate number of classes is made by means of some information
criteria. Here we opt for the Bayesian information criterion and the consistent Akaike
information criterion (CAIC), which penalize more heavily those models with a large
number of parameters.

10. This is an indication of the bias produced by the irrelevant alternatives property of standard
conditional logit models. See Bhat (2000) for this point.
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The next table shows—for an increasing number of latent classes—the maximized
log likelihood, the number of parameters, the Bayesian information criterion, and the
CAIC:

Classes Log Likelihood N.param. CAIC BIC

Cl.1 -1356.39 6 2746.40 2740.40
Cl.2 -1211.35 13 2495.57 2482.57
Cl.3 -1118.23 20 2348.57 2328.57
Cl.4 -1085.30 27 2321.95 2294.95
Cl.5* -1040.49 34 2271.55* 2237.55
Cl.6 -1028.56 41 2286.93 2245.93
Cl.7 -1006.37 48 2281.79 2233.79
Cl.8* -990.24 55 2288.76 2233.76*
Cl.9 -983.64 62 2314.80 2252.80
Cl.10 -978.10 69 2342.96 2273.96
Cl.11 -963.10 76 2352.19 2276.19

From these results, we can infer that the five-class model is optimal according to
the CAIC, whilst the Bayesian criterion points to a model with eight latent classes. The
next table summarizes the fit coefficients for a model with eight latent classes:

Variable Class1 Class2 Class3 Class4 Class5

price -0.910 -0.737 -0.488 -2.110 -0.642
contract -0.438 0.218 -0.592 -0.662 0.096

local 0.370 2.416 0.782 0.717 2.186
wknown 0.369 2.840 0.710 0.241 1.207

tod -8.257 -6.690 -4.132 -14.191 -3.836
seasonal -6.440 -7.213 -6.560 -17.207 -4.052

Prob 0.120 0.097 0.091 0.070 0.096

Variable Class6 Class7 Class8 W.Average

price -1.208 -1.533 -0.082 -0.946
contract -0.198 -0.409 -0.156 -0.269

local 6.578 0.621 4.937 2.369
wknown 5.103 0.930 3.444 1.918

tod -14.847 -16.007 -1.088 -9.003
seasonal -15.334 -14.818 -1.060 -9.058

Prob 0.111 0.236 0.178 -

Results show that the parameters are rather different from class to class, meaning
that there is an extended unobserved heterogeneity in the choice behavior. Interestingly,
the weighted averages of the parameters are close to the correspondent values obtained
from the parametric estimation with mixlogit.
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As for the EM recursion, the estimation of the eight-class model took 49 iterations
before reaching convergence, that is, about one minute on our standard-issue PC with a
dual-core processor and 4 GB RAM. However, the routine is already close to the maximum
at the 11th iteration, that is, after less than 10 seconds.

This is a common feature of EM algorithms, and it actually suggests another appli-
cation of the EM procedure proposed in this contribution. In fact, the routine could
also be used to obtain good starting values for the estimation of latent-class models
with gradient-based algorithms. This could be particularly useful either to speed up the
estimation process or to avoid convergence problems when fitting models with a high
number of latent classes.
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