Partially Observed Systems
Zijing Hu
November 23, 2022
Contents
1 State Estimation For A Markov Chain 1
2 Optimal Control of A Noisily Observed MDP 2
3 Linear Quadratic Gaussian Systems 3
3.1 Gaussian Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 The Kalman Filtering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
*This note is based on ECEN 755: Stochastic Systems by Dr. P. R. Kumar, TAMU.
1 State Estimation For A Markov Chain
There are three generic state estimation problems in dynamical systems, given observations y
t
:
1. Filtering: find an estimator P r (x
t
= i | y
t
) of the current state x
t
.
2. Smoothing: find an estimator P r (x(s) = i | y
t
) of the state x(s) at some previous time s < t.
3. Prediction: find an estimator P r (x(s) = i | y
t
) of the state x(s) at some future time s > t.
Suppose that we get noisy observations y(x) ∈ Y of the state x
t
. Suppose that we already know
P r (y
t
= j | x
t
= i) .
We observe y
t
= [y
0
, y
1
, . . . , y
t
] and want to compute Pr(x
t
= i | y
t
) and P r(x
t+1
= i | y
t
).
Theorem 1.1. Normalized filtering equation.
P r
x
t+1
= i | y
t
=
X
i
′
P r
x
t+1
= i, x
t
= i
′
| y
t
=
X
i
′
P r
x
t
= i
′
| y
t
P r
x
t+1
= i | x
t
= i
′
, y
t
=
X
i
′
P r
x
t
= i
′
| y
t
P r (x
t+1
= i | x
t
= i
′
)
1