Simulation-Based Methods
Zijing Hu
October 15, 2022
Contents
1 Bootstrap 1
2 Sampling Methods 2
2.1 Ways to Draw from a Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Simulation-Based Estimation 5
3.1 Maximum Simulated Likelihood Estimation (MSL) . . . . . . . . . . . . . . . . . . . . 5
3.2 Simulated Method of Moments Estimation (SMM) . . . . . . . . . . . . . . . . . . . . 6
*This note is based on
• ECMT 677: Applied Microeconometrics by Dr. Yonghong An and Dr. Jackson Bunting, TAMU
• Discrete Choice Methods with Simulation by Kenneth Train
1 Bootstrap
Asymptotics vs. Bootstrap
1. Heteroskedasticity: robust-std performs badly for samll sample size.
2. Cluster: Athey et al. (2017, 2022)
Bootstrapping (Efron 1972) assigns measures of accuracy (bias, variance, confidence intervals,
prediction error, etc.) to sample estimates.
std(
ˆ
β
β
β) =
v
u
u
t
1
B − 1
B
X
j=1
˜
β
β
β
j
−
¯
˜
β
β
β
2
How to choose a sufficient number of B? B determines std(
ˆ
β
β
β) and N determines
ˆ
β
β
β. B = 500 is
enough and B = 1000 is sufficient.
Bootstrap Methods in Linear Regression
• Pair bootstrap. For data (X
i
, y
i
) ∼ F (X, y), bootstrap (X
⋆
j
, y
⋆
j
) where j = (1, 2, . . . , B).
Compute each
ˆ
β
β
β
j
. Drawbacks: no restrictions for E[ε
ε
ε
⋆
j
|X
⋆
j
] = E[y
⋆
j
− X
⋆
j
β
β
β|X
⋆
j
] = 0.
• Residual bootstrap. Compute ˆu
i
= y
i
− X
′
i
ˆ
β
β
β and sample (X
i
, y
⋆
i
) where y
⋆
i
= X
′
i
ˆ
β
β
β + ˆu
⋆
i
and
ˆu
⋆
i
∼ {ˆu
1
, ˆu
2
, . . . , ˆu
n
}. Drawbacks: Homoskedasticity is imposed, i.e., V ar(ˆu
⋆
i
|X
i
) = σ
2
.
• Wild boostrap. First, compute
ˆ
β
β
β and ˆu
i
where i = (1, 2, . . . , n). Then,
y
⋆
i
= X
′
i
ˆ
β
β
β + f(ˆu
i
)v
⋆
i
1