NLVAE: A New Machine Learning Approach for Extracting and Identifying Sales-Driving Product **Attributes**

Zijing "Jimmy" Hu and Venkatesh Shankar

Mays Business School, Texas A&M University

May 7, 2024

▶ Product development

▶ Product development→ marketing research

▶ Traditional methods are expensive and time-consuming

- ▶ Traditional methods are expensive and time-consuming
- ▶ Can firms use publicly available data (e.g., ratings/reviews)?

- ▶ Traditional methods are expensive and time-consuming
- ▶ Can firms use publicly available data (e.g., ratings/reviews)?
	- \blacktriangleright Rich information

- ▶ Traditional methods are expensive and time-consuming
- ▶ Can firms use publicly available data (e.g., ratings/reviews)?
	- \blacktriangleright Rich information
	- \blacktriangleright Continuously updating

- ▶ Traditional methods are expensive and time-consuming
- ▶ Can firms use publicly available data (e.g., ratings/reviews)?
	- \blacktriangleright Rich information
	- \blacktriangleright Continuously updating
	- \blacktriangleright Cheap ▶

- ▶ Traditional methods are expensive and time-consuming
- ▶ Can firms use publicly available data (e.g., ratings/reviews)?
	- \blacktriangleright Rich information
	- \blacktriangleright Continuously updating
	- \blacktriangleright Cheap
	- ▶
	- \blacktriangleright Bias

- ▶ Traditional methods are expensive and time-consuming
- \triangleright Can firms use publicly available data (e.g., ratings/reviews)?
	- \blacktriangleright Rich information
	- \blacktriangleright Continuously updating
	- \blacktriangleright Cheap
	- ▶
	- \blacktriangleright Bias
- ▶ We need advanced techniques to better utilize this data and facilitate effective and efficient marketing research.

Gaps in Relevant Literature

▶ Marketing research by leveraging publicly available structured and unstructured data (Lee and Bradlow 2011; Tirunillai and Tellis 2014; Timoshenko and Hauser 2019; Toubia et al. 2019; Dhillon and Aral 2021; Chakraborty et al. 2022; Zhang and Luo 2023)

Gaps in Relevant Literature

- ▶ Marketing research by leveraging publicly available structured and unstructured data (Lee and Bradlow 2011; Tirunillai and Tellis 2014; Timoshenko and Hauser 2019; Toubia et al. 2019; Dhillon and Aral 2021; Chakraborty et al. 2022; Zhang and Luo 2023)
- ▶ Biases in public reputation systems (Li and Hitt 2008; Ghose et al. 2012; Nosko and Tadelis 2015; Dai et al. 2018; He et al. 2022)

Gaps in Relevant Literature

- ▶ Marketing research by leveraging publicly available structured and unstructured data (Lee and Bradlow 2011; Tirunillai and Tellis 2014; Timoshenko and Hauser 2019; Toubia et al. 2019; Dhillon and Aral 2021; Chakraborty et al. 2022; Zhang and Luo 2023)
- ▶ Biases in public reputation systems (Li and Hitt 2008; Ghose et al. 2012; Nosko and Tadelis 2015; Dai et al. 2018; He et al. 2022)
- ▶ Limited research studies bias correction when utilizing structured and unstructured data from reputation systems. \longrightarrow This study

Research Questions

- ▶ How can we extract and accurately measure product attributes from structured and unstructured data on consumer evaluation of products?
- ▶ Which extracted product attributes contribute most to sales?

Our Contributions

▶ To the literature on new product development

- ▶ A general model to accurately measure important yet unobservable attributes from publicly available data.
- ▶ Some attributes that contribute to better customer feedback might not necessarily drive sales.

Our Contributions

▶ To the literature on new product development

- ▶ A general model to accurately measure important yet unobservable attributes from publicly available data.
- ▶ Some attributes that contribute to better customer feedback might not necessarily drive sales.
- ▶ To the literature on ML applications in marketing
	- ▶ A theory-driven deep learning architecture that overcomes bias and enhances explainability.

Recovering the True Value with Biased Measures

We start with Theorem (Hu and Schennach 2008)

Recovering the True Value with Biased Measures

We start with Theorem (Hu and Schennach 2008)

If we can find three measures of a variable of interest that are correlated through only the true value (CI condition), we can uniquely identify the distribution of the variable.

Recovering the True Value with Biased Measures

We start with Theorem (Hu and Schennach 2008)

If we can find three measures of a variable of interest that are correlated through only the true value (CI condition), we can uniquely identify the distribution of the variable.

$$
f_{X_1X_2X_3}(x_1, x_2, x_3)
$$

= $\int_{\mathcal{Z}} f_{X_1|Z}(x_1 | z) f_{X_2|Z}(x_2 | z) f_{X_3Z}(x_3, z) dz$

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Limitations: Identification and convergence

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Limitations: Identification and convergence

▶ We propose Non-Latent Variational AutoEncoder (NLVAE)

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Limitations: Identification and convergence

- ▶ We propose Non-Latent Variational AutoEncoder (NLVAE)
	- ▶ Find a mapping from observable to unobservable (non-latent)

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Limitations: Identification and convergence

▶ We propose Non-Latent Variational AutoEncoder (NLVAE)

- ▶ Find a mapping from observable to unobservable (non-latent)
- ▶ Complete data generation process $\text{measure} \xrightarrow{encoder}$ unobservable true value $\xrightarrow{decoder}$ measure

12/01/2023 © 2024 Hu and Shankar. All rights reserved. 6/19

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

- ▶ Limitations: Identification and convergence
- ▶ We propose Non-Latent Variational AutoEncoder (NLVAE)
	- ▶ Find a mapping from observable to unobservable (non-latent)
	- ▶ Complete data generation process
		- $\text{measure} \xrightarrow{encoder}$ unobservable true value $\xrightarrow{decoder}$ measure
	- ▶ CI condition as a regularization for the encoding space

▶ Hu et al. (2023): Predict $\hat{Z} = NN(X_1, X_2, ..., X_N)$ that satisfy the CI condition:

$$
f_{X_1, X_2, \dots, X_N | \hat{Z}} = f_{X_1 | \hat{Z}} f_{X_1 | \hat{Z}} \dots f_{X_N | \hat{Z}}
$$

▶ Limitations: Identification and convergence

▶ We propose Non-Latent Variational AutoEncoder (NLVAE)

- ▶ Find a mapping from observable to unobservable (non-latent)
- ▶ Complete data generation process

 $\text{measure} \xrightarrow{encoder}$ unobservable true value $\xrightarrow{decoder}$ measure

- \blacktriangleright CI condition as a regularization for the encoding space
- ▶ Mild assumptions to ensure identification

Conditional Variational Autoencoder (CVAE)

We use the architecture of CVAE (Sohn et al. 2015)

- ▶ CVAE reconstructs only one input that contains most information
- ▶ Other inputs are treated as conditions in encoding and decoding

$$
x \longrightarrow g(x, w; \phi) \longrightarrow \mu, \sigma \longrightarrow z = \mu + \sigma \odot \epsilon \longrightarrow h(z, w; \theta) \longrightarrow p_{\theta}(x \mid z, w)
$$

The optimization target is given by the (inverted) ELBO:

$$
\mathcal{F}_{\text{CVAE}}(\theta, \phi) = \frac{1}{N} \sum_{i=1}^{N} \bigg[-\log p_{\theta}\left(x_i \mid \mathbf{z}_i, \mathbf{w}_i\right) + \text{D}_{\text{KL}}\left[q_{\phi}\left(\mathbf{z}_i \mid x_i, \mathbf{w}_i\right) \| \text{Pr}\left(\mathbf{z}_i\right) \right] \bigg]
$$

$NLVAE = CVAE + CI$ Condition

The CI restriction over the enconding space leads to a new optimization target:

$$
\min \mathcal{F}_{\text{CVAE}}(\theta, \phi) \ s.t. \ \text{D}_{\text{KL}}\left[f_{X \mathbf{W}_j Z_j} || f_{X Z_j} \prod_{k=1}^K f_{W_{jk} | Z_j}\right] \le \varepsilon
$$

$NLVAE = CVAE + CI$ Condition

The CI restriction over the enconding space leads to a new optimization target:

$$
\min \mathcal{F}_{\text{CVAE}}(\theta, \phi) \ s.t. \ \text{D}_{\text{KL}}\left[f_{X\mathbf{W}_j Z_j} || f_{X Z_j} \prod_{k=1}^K f_{W_{jk} | Z_j}\right] \le \varepsilon
$$

Incorporating the Karush-Kuhn-Tucker (KKT) conditions:

$$
\mathcal{F}_{\mathrm{KKT}}(\theta, \phi; \beta) = \frac{1}{N} \sum_{i=1}^{N} \bigg[-\log p_{\theta}\left(x^{(i)} \mid \mathbf{z}^{(i)}\right) + \mathrm{D}_{\mathrm{KL}}\left[q_{\phi}\left(\mathbf{z}^{(i)} \mid x^{(i)}, \mathbf{w}_{1}^{(i)}, ..., \mathbf{w}_{J}^{(i)}\right) \parallel \mathrm{Pr}\left(\mathbf{z}^{(i)}\right) \right] \bigg] \\ + \beta \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{J} \mathrm{D}_{\mathrm{KL}}\bigg[f_{X \mathbf{W}_{j} Z_{j}}(x^{(i)}, \mathbf{w}_{j}^{(i)}, z_{j}^{(i)}) \parallel f_{X Z_{j}}(x^{(i)}, z_{j}^{(i)}) \prod_{k=1}^{K} f_{W_{jk}|Z_{j}}(w_{jk}^{(i)}, z_{j}^{(i)}) \bigg]
$$

 β is a hyperparameter, similar to β -VAE (Higgins et al. 2017)

Model Architecture of NLVAE

Empirical context in our study:

- \blacktriangleright x: pooled measure (e.g., overall product ratings)
- $\blacktriangleright \mathbf{w}_i = [w_{i1}, ..., w_{iK}]$: attribute-specific measures (e.g., sentiments or mention counts of product attributes)
- \triangleright z_i : true attribute score of the *j*-th product attribute

Simulation Settings

▶ Since the true values are observable, we use a hypothesized data generation process to evaluate NLVAE

Simulation Settings

- ▶ Since the true values are observable, we use a hypothesized data generation process to evaluate NLVAE
- ▶ Context and data
	- \blacktriangleright Eight product attributes
	- \blacktriangleright Pooled measure X (same for each attribute)
	- \blacktriangleright Two attribute-specific measures (W_j,\tilde{W}_j)
	- \blacktriangleright Each observation is given by: $(x^{(i)}, w^{(i)}_1, \tilde{w}^{(i)}_1, ..., w^{(i)}_8, \tilde{w}^{(i)}_8)$

Simulation Settings

- ▶ Since the true values are observable, we use a hypothesized data generation process to evaluate NLVAE
- ▶ Context and data
	- \blacktriangleright Eight product attributes
	- \blacktriangleright Pooled measure X (same for each attribute)
	- \blacktriangleright Two attribute-specific measures (W_j,\tilde{W}_j)
	- \blacktriangleright Each observation is given by: $(x^{(i)}, w^{(i)}_1, \tilde{w}^{(i)}_1, ..., w^{(i)}_8, \tilde{w}^{(i)}_8)$
- ▶ Goal: Decompose true attribute scores from the overall rating
	- \blacktriangleright Recover each true attribute score $z^{(i)}_j$

Data Generation Process

▶ The most ideal case

- ▶ Classical, linear, and separable measurement error
- \blacktriangleright Honest and comprehensive customer feedback $+$ direct measures of attribute scores

Data Generation Process

▶ The most ideal case

- ▶ Classical, linear, and separable measurement error
- \blacktriangleright Honest and comprehensive customer feedback $+$ direct measures of attribute scores
- \blacktriangleright A worse case
	- ▶ Nonclassical, linear, and separable measurement error
	- \triangleright Biased customer feedback $+$ direct measures of attribute scores

Data Generation Process

▶ The most ideal case

- \blacktriangleright Classical, linear, and separable measurement error
- \blacktriangleright Honest and comprehensive customer feedback $+$ direct measures of attribute scores
- \blacktriangleright A worse case
	- ▶ Nonclassical, linear, and separable measurement error
	- \triangleright Biased customer feedback $+$ direct measures of attribute scores
- \blacktriangleright The worst case (but general)
	- ▶ Nonclassical, nonlinear, and nonseparable measurement error
	- \triangleright Biased customer feedback $+$ indirect measures of attribute scores

Simulation Results

Task	NC	NL/NS	measure	Correlation with the True Value							
				A1	A2	A3	A4	A5	A6	A7	A8
1	No	No	Х	0.20	0.18	0.20	0.23	0.24	0.19	0.19	0.19
			W	0.69	0.69	0.72	0.72	0.71	0.72	0.70	0.71
			Ŵ	0.47	0.44	0.44	0.45	0.44	0.46	0.46	0.44
			$(W+\tilde{W})/2$	0.71	0.70	0.71	0.71	0.71	0.73	0.71	0.71
			NLVAE	0.72	0.72	0.73	0.73	0.72	0.74	0.72	0.72
$\overline{2}$	$_{\rm Yes}$	No	Χ	0.17	0.17	0.21	0.24	0.21	0.20	0.21	0.22
			W	0.50	0.49	0.50	0.55	0.51	0.50	0.52	0.50
			Ŵ	0.27	0.29	0.30	0.30	0.29	0.29	0.27	0.28
			$(W+\tilde{W})/2$	0.51	0.51	0.52	0.55	0.53	0.52	0.53	0.52
			NLVAE	0.51	0.52	0.55	0.58	0.56	0.55	0.57	0.54
3	$_{\rm Yes}$	Yes	Х	0.23	0.20	0.24	0.21	0.22	0.21	0.18	0.21
			W	0.34	0.30	0.33	0.33	0.30	0.32	0.34	0.34
			Ŵ	-0.29	-0.26	-0.26	-0.24	-0.25	-0.27	-0.29	-0.30
			$(W+W)/2$	0.04	0.03	0.05	0.07	0.04	0.04	0.04	0.03
			NLVAE	0.43	0.38	0.44	0.37	0.35	0.33	0.37	0.45

Note: In the table header, "C" stands for nonclassical measurement error, "L/S" signifies nonlinear/nonseparable measurement error, and "A1"-"A8" denote product attributes 1-8. The correlation coefficients are computed on the test set with 2,000 observations. Measures that performed optimally within each simulation task are highlighted in bold font.

Recovering True Attribute Scores of Video Games

▶ Data: Video game data from Steam

- ▶ 117 video games from February 1, 2022, to January 31, 2023
- ▶ Historical revenue rankings, active player counts, prices, and other relevant information

Recovering True Attribute Scores of Video Games

- ▶ Data: Video game data from Steam
	- ▶ 117 video games from February 1, 2022, to January 31, 2023
	- ▶ Historical revenue rankings, active player counts, prices, and other relevant information
- \blacktriangleright Three measures that can satisfy the CI condition
	- 1. Attribute mention frequencies in English-speaking regions
	- 2. Attribute mention frequencies in Chinese-speaking regions
	- 3. Overall video game rating in other regions

Recovering True Attribute Scores of Video Games

- ▶ Data: Video game data from Steam
	- ▶ 117 video games from February 1, 2022, to January 31, 2023
	- ▶ Historical revenue rankings, active player counts, prices, and other relevant information
- \blacktriangleright Three measures that can satisfy the CI condition
	- 1. Attribute mention frequencies in English-speaking regions
	- 2. Attribute mention frequencies in Chinese-speaking regions
	- 3. Overall video game rating in other regions
- ▶ We use Google Gemini to summarize attribute and generate attribute mention counts
	- ▶ Good capability for processing multilingual reviews
	- \blacktriangleright It embeds domain knowledge
	- ▶ Open source foundation model

Extracting 10 Video Game Attributes Using Google Gemini

Relating Product Attributes and Sales

$$
y_{it}^j = \hat{z}_{it}^{\top} \beta_1^j + \delta_{it}^{\top} \beta_2^j + \xi_i^j + \phi_t^j + \varepsilon_{it}^j.
$$

- \blacktriangleright j=1: (inverted) revenue rankings; j=2: active player counts; j=3: overall ratings
- ▶ i: video game index; t: week index
- \triangleright \hat{z}_{it} : recovered attribute scores
- \blacktriangleright δ_{it} : covariates such as price, release years, and so on.
- $\blacktriangleright \xi_i^j, \phi_t^j$: fixed effects
- \blacktriangleright ε_{it}^j : error term

Relating Product Attributes and Sales

Table: Attribute-Level Contributions

(1) Revenue Ranking (Inverted); (2) Active Player Count; (3) Customer Rating

Prediction Results

Table: Prediction RMSE of Models with Different Predictors

Attribute Score Predictors				
Measure 1	1 029		0.548 1.195 0.609	
Measure 2	1 039		0.529 1.206 0.596	
Measure 3		1.120 0.524 1.518 0.676		
Measure $1 + 2 + 3$	0 866		0.525 1.010	0.593
NLVAE-predictors	0.880		0.514 1.078	0.578

(1) Attribute score predictors \rightarrow inverted revenue rankings

(2) Attribute score predictors + control variables \rightarrow inverted revenue rankings

(3) Attribute score predictors \rightarrow active player counts

(4) Attribute score predictors + control variables \rightarrow active player counts

Research Questions and Results

- ▶ How can we extract and accurately measure product attributes from structured and unstructured data on consumer evaluation of products?
	- ▶ We propose the NLVAE to extract and measure product attribute scores from online product overall ratings and reviews
	- ▶ NLVAE overcomes many types of biases in public data
	- ▶ NLVAE uses a theory-driven and interpretable model

Research Questions and Results

- ▶ How can we extract and accurately measure product attributes from structured and unstructured data on consumer evaluation of products?
	- ▶ We propose the NLVAE to extract and measure product attribute scores from online product overall ratings and reviews
	- ▶ NLVAE overcomes many types of biases in public data
	- ▶ NLVAE uses a theory-driven and interpretable model
- ▶ Which extracted product attributes contribute most to sales?
	- ▶ In the video game data we analyze, only Gameplay and Replayability are positively related to sales
	- ▶ Some attributes (Music, Narrative, Puzzles, Secrets, and Community) affect video game ratings but do not contribute to sales

Theoretical and Managerial Implications

\blacktriangleright Theoretical implications

- ▶ Important product attributes can be recovered
- ▶ Product attributes have complex effects
- ▶ Bias mitigation and explainability of ML models can be enhanced

Theoretical and Managerial Implications

\blacktriangleright Theoretical implications

- ▶ Important product attributes can be recovered
- ▶ Product attributes have complex effects
- ▶ Bias mitigation and explainability of ML models can be enhanced
- ▶ Managerial implications
	- ▶ Identifying sales-related yet potentially unobservable attributes for product development
	- Unique and valuable insights beyond customer feedback

Thank you! zijinghu@tamu.edu

Appendix

Intuition of Hu and Schennach (2008)

Defining linear operators

$$
L_{B|A}: \mathcal{G}(\mathcal{A}) \mapsto \mathcal{G}(\mathcal{B}) \text{ with } [L_{B|A}g] (b) \equiv \int_{\mathcal{A}} f_{B|A}(b \mid a) g(a) da,
$$

$$
\Delta_{b;A}: \mathcal{G}(\mathcal{A}) \mapsto \mathcal{G}(\mathcal{A}) \text{ with } \Delta_{b;A}g \equiv f_{B|A}(b \mid \cdot) g(\cdot).
$$

Then

$$
L_{x_2;X_1|X_3} = L_{X_1|Z} \Delta_{x_2;Z} L_{Z|X_3},\tag{1}
$$

$$
L_{Z|X_3} = L_{X_1|Z}^{-1} L_{X_1|X_3},\tag{2}
$$

and we can use eigendecomposition to solve:

$$
L_{x_2;X_1|X_3}L_{X_1|X_3}^{-1}=L_{X_1|Z}\Delta_{x_2;Z}L_{X_1|Z}^{-1},
$$

Geometric Interpretation of Eigenvectors

$$
L_{x_2;X_1|X_3}L_{X_1|X_3}^{-1} = L_{X_1|Z}\Delta_{x_2;Z}L_{X_1|Z}^{-1},
$$

 $L_{X_1|Z}$ is exactly the set of directions (vectors) that are fixed in the action (a-b) of $L_{x_2;X_1|X_3}L_{X_1}^{-1}$ $X_1|X_3$

Training Tricks

- ▶ The loss function of NN is non-convex. The model might get stuck in suboptimal points and generate unstable results
- ▶ The following procedure increases the robustness of our model
	- \triangleright Step 0: train the whole model
	- \triangleright Step 1: initialize the decoder and only one of encoders; keep other weights fixed
	- \triangleright Step 2: retrain the model
		- ▶ If the new model yields a better KL divergence of the conditional independence restriction, use the new weights
		- ▶ Otherwise, use the old weights
		- ▶ Repeat Step 1-2 multiple times
	- \triangleright Step 3: train the whole model until converge

Training Tricks: Visualizing the Training Process

03/14/2024 **C** 2024 Hu and Shankar. All rights reserved. Appendix 4/ 9

Identification Tricks

 \triangleright Challenge 1: the orders/directions of the true value

 \triangleright We impose a reasonable assumption that, given other attribute scores fixed, a better attribute score (z_i) leads to a higher overall rating (x) :

$$
P(\frac{\partial x}{\partial z_i} \le 0) < P(\frac{\partial x}{\partial z_i} > 0)
$$

 \triangleright Using automatic differentiation we can bootstrap the distribution of $\frac{\partial x}{\partial z_i}$ and determine the direction.

\blacktriangleright Challenge 2: the scale of the true value

- ▶ The regularization term $D_{KL}\left[q_{\phi}\|p_{z}\right]$ helps restrict the scale
- ▶ Cannot fully pin it down but enough for downstream tasks

Data Generation Process (Task 1)

$$
\begin{split} &x^{(i)} = \frac{1}{K} \sum_{k=1}^K \sum_{j=1}^J \frac{e^{\nu_{jk}^{(i)}} x_{jk}^{(i)}}{\sum_{j'=1}^J e^{\nu_{j'k}^{(i)}}}, \; x_{jk}^{(i)} \sim \mathcal{N}(z_j^{(i)}, \sigma_x), \; \nu_{jk}^{(i)} \sim \mathcal{N}(0, \sigma_\nu), \\ &w_j^{(i)} = \frac{1}{K} \sum_{k=1}^K w_{jk}^{(i)}, \; w_{jk}^{(i)} \sim \mathcal{N}(z_j^{(i)}, \sigma_w), \\ &\tilde{w}_j^{(i)} = \frac{1}{K} \sum_{k=1}^K \tilde{w}_{jk}^{(i)}, \; \tilde{w}_{jk}^{(i)} \sim \mathcal{N}(z_j^{(i)}, \sigma_{\tilde{w}}). \end{split}
$$

03/14/2024 © 2024 Hu and Shankar. All rights reserved. Appendix 6/ 9

Data Generation Process (Task 2)

$$
x^{(i)} = \frac{1}{\sum_{k=1}^{K} 1_{\{\nu_{jk}^{(i)} \leq \sigma_{\nu} \exists j\}}}\sum_{k:\exists j} \sum_{\nu_{jk}^{(i)} \leq \sigma_{\nu}} \frac{e^{\nu_{jk}^{(i)}} x_{jk}^{(i)}}{\sum_{j':\nu_{jk}^{(i)} \leq \sigma_{\nu}} e^{\nu_{j'k}^{(i)}}},
$$

$$
w_{j}^{(i)} = \frac{1}{\sum_{k=1}^{K} 1_{\{w_{jk}^{(i)} \leq (\sigma_{w} + \sigma_{z})/2\}}}\sum_{k:\omega_{jk}^{(i)} \leq (\sigma_{w} + \sigma_{z})/2} w_{jk}^{(i)},
$$

$$
\tilde{w}_{j}^{(i)} = \frac{1}{\sum_{k=1}^{K} 1_{\{\tilde{w}_{jk}^{(i)} \leq (\sigma_{\tilde{w}} + \sigma_{z})/2\}}}\sum_{k:\omega_{jk}^{(i)} \leq (\sigma_{\tilde{w}} + \sigma_{z})/2} \tilde{w}_{jk}^{(i)}.
$$

03/14/2024 © 2024 Hu and Shankar. All rights reserved. Appendix 7/ 9

Data Generation Process (Task 3)

03/14/2024 © 2024 Hu and Shankar. All rights reserved. Appendix 8/ 9

Frequency and Correlation of Attribute Mentions

